4.4 Article

Ruthenium hydride-catalyzed regioselective addition of benzaldehyde to dienes leading to β,γ-unsaturated ketones: a DFT study

Journal

JOURNAL OF MOLECULAR MODELING
Volume 18, Issue 12, Pages 4955-4963

Publisher

SPRINGER
DOI: 10.1007/s00894-012-1493-1

Keywords

Benzaldehyde; beta,gamma-unsaturated ketones; DFT; Isoprene; Reaction mechanism; Ruthenium hydride-catalyzed addition

Funding

  1. Natural Science Foundation of Shandong Province, P. R.

Ask authors/readers for more resources

Density functional theory (DFT) was used to investigate the ruthenium hydride-catalyzed regioselective addition reactions of benzaldehyde to isoprene leading to the branched beta,gamma-unsaturated ketone. All intermediates and the transition states were optimized completely at the B3LYP/6-31 G(d,p) level (LANL2DZ(f) for Ru, LANL2DZ(d) for P and Cl). Calculated results indicated that three catalysts RuHCl(CO)(PMe3)(3) (1), RuH2(CO)(PMe3)(3) (2), and RuHCl(PMe3)(3) (3) exhibited different catalysis, and the first was the most excellent. The most favorable reaction pathway included the coordination of 1 to the less substituted olefin of isoprene, a hydrogen transfer reaction from ruthenium to the carbon atom C1, the complexation of benzaldehyde to ruthenium, the carbonyl addition, and the hydride elimination reaction. The carbonyl addition was the rate-determining step. The dominant product was the branched beta,gamma-unsaturated ketone. Furthermore, the presence of one toluene molecule lowered the activation free energy of the transition state of the carbonyl addition by hydrogen bonds between the protons of toluene and the chlorine, carbonyl oxygen of the ruthenium complex. On the whole, the solvent effect decreased the free energies of the species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available