4.4 Article

Relating normal vibrational modes to local vibrational modes: benzene and naphthalene

Journal

JOURNAL OF MOLECULAR MODELING
Volume 19, Issue 7, Pages 2865-2877

Publisher

SPRINGER
DOI: 10.1007/s00894-012-1697-4

Keywords

Normal vibrational modes; Local vibrational modes; Adiabatic connection scheme; Local mode analysis; Benzene; Naphthalene

Funding

  1. National Science Foundation [CHE 1152357]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1152357] Funding Source: National Science Foundation

Ask authors/readers for more resources

Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (aEuro) (BWB (aEuro) )(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available