4.7 Article

Genetic ablation of adenosine receptor A3 results in articular cartilage degeneration

Journal

JOURNAL OF MOLECULAR MEDICINE-JMM
Volume 96, Issue 10, Pages 1049-1060

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00109-018-1680-3

Keywords

Articular cartilage; Adenosine receptor 3; Osteoarthritis; RUNX2; CaMKII

Funding

  1. California Institute for Regenerative Medicine [TRAN1-09288] Funding Source: Medline
  2. KID-funding from the Karolinska Institutet [2415/2012-225, 2-3707/2013] Funding Source: Medline
  3. NIAMS NIH HHS [R01 AR071734] Funding Source: Medline
  4. NIA NIH HHS [R01 AG058624] Funding Source: Medline
  5. NIH HHS [R01AR071734] Funding Source: Medline
  6. Swedish Heart and Lung Foundation [20140448] Funding Source: Medline
  7. Swedish Research Council [2016-01381] Funding Source: Medline
  8. U.S. Department of Defense [W81XWH-13-1-0465] Funding Source: Medline

Ask authors/readers for more resources

Osteoarthritis (OA), the most common form of arthritis, is characterized by inflammation of joints and cartilage degradation leading to disability, discomfort, severe pain, inflammation, and stiffness of the joint. It has been shown that adenosine, a purine nucleoside composed of adenine attached to ribofuranose, is enzymatically produced by the human synovium. However, the functional significance of adenosine signaling in homeostasis and pathology of synovial joints remains unclear. Adenosine acts through four cell surface receptors, i.e., A1, A2A, A2B, and A3, and here, we have systematically analyzed mice with a deficiency forA3 receptor as well as pharmacological modulations of this receptor with specific analogs. The data show that adenosine receptor signaling plays an essential role in downregulating catabolic mechanisms resulting in prevention of cartilage degeneration. Ablation of A3resulted in development of OA in aged mice. Mechanistically, A3 signaling inhibited cellular catabolic processes in chondrocytes including downregulation of Ca2+/calmodulin-dependent protein kinase (CaMKII), an enzyme that promotes matrix degradation and inflammation, as well as Runt-related transcription factor 2 (RUNX2). Additionally, selective A3 agonists protected chondrocytes from cell apoptosis caused by pro-inflammatory cytokines or hypo-osmotic stress. These novel data illuminate the protective role of A3, which is mediated via inhibition of intracellular CaMKII kinase and RUNX2 transcription factor, the two major pro-catabolic regulators in articular cartilage.Key messagesAdenosine receptor A3 (A3) knockout results in progressive loss of articular cartilage in vivo.Ablation of A3 results in activation of matrix degradation and cartilage hypertrophy.A3agonists downregulate RUNX2 and CaMKII expression in osteoarthritic human articular chondrocytes.A3 prevents articular cartilage matrix degradation induced by inflammation and osmotic fluctuations.A3 agonist inhibits proteolytic activity of cartilage-degrading enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available