4.3 Review

Adipogenesis: new insights into brown adipose tissue differentiation

Journal

JOURNAL OF MOLECULAR ENDOCRINOLOGY
Volume 51, Issue 3, Pages T75-T85

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1530/JME-13-0158

Keywords

brown adipocytes; brite adipocytes; differentiation; human stem cells

Funding

  1. FP7 BetaBAT
  2. BBSRC
  3. MRC programme grant
  4. Wellcome Trust
  5. Biotechnology and Biological Sciences Research Council [BB/J009865/1] Funding Source: researchfish
  6. Medical Research Council [MC_UU_12012/5/B, G0600717, G0802051, MC_UU_12012/2, G0600717B] Funding Source: researchfish
  7. BBSRC [BB/J009865/1] Funding Source: UKRI
  8. MRC [G0802051, G0600717, MC_UU_12012/2] Funding Source: UKRI

Ask authors/readers for more resources

Confirmation of the presence of functional brown adipose tissue (BAT) in humans has renewed interest in investigating the potential therapeutic use of this tissue. The finding that its activity positively correlates with decreased BMI, decreased fat content, and augmented energy expenditure suggests that increasing BAT mass/activity or browning of white adipose tissue (WAT) could be a strategy to prevent or treat obesity and its associated morbidities. The challenge now is to find a safe and efficient way to develop this idea. Whereas BAT has being widely studied in murine models both in vivo and in vitro, there is an urgent need for human cellular models to investigate BAT physiology and functionality from a molecular point of view. In this review, we focus on the latest insights surrounding BAT development and activation in rodents and humans. Then, we discuss how the availability of murine models has been essential to identify BAT progenitors and trace their lineage. Finally, we address how this information can be exploited to develop human cellular models for BAT differentiation/activation. In this context, human embryonic stem and induced pluripotent stem cells-based cellular models represent a resource of great potential value, as they can provide a virtually inexhaustible supply of starting material for functional genetic studies, -omics based analysis and validation of therapeutic approaches. Moreover, these cells can be readily genetically engineered, opening the possibility of generating patient-specific cellular models, allowing the investigation of the influence of different genetic backgrounds on BAT differentiation in pathological or in physiological states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available