4.2 Article

Tuning of the catalytic properties of PdCl2(XnPy)2 complexes by variation of the basicity of aromatic ligands

Journal

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
Volume 385, Issue -, Pages 141-148

Publisher

ELSEVIER
DOI: 10.1016/j.molcata.2014.01.020

Keywords

Palladium complexes; Substituted pyridines; Thermal analysis; Crystal structure; Carbonylation

Funding

  1. Ministry of Science and Higher Education [IP201 1027071]

Ask authors/readers for more resources

The position and number of substituents in pyridine ligands (XnPy) were correlated with structural, physical, and chemical properties of PdCl2(XnPy)(2) complexes applied as catalysts for the carbonylation of aromatic nitrocompounds (phosgene-free method of carbamates production). Thermal stability and catalytic activity of PdCl2(XnPY)(2) complexes without steric hindrance increases with increasing XnPy's basicity whereas a decrease of thermal stability and catalytic activity of the complexes is observed for sterically crowded complexes (with the ortho-substituted XnPy). The complexes with X = Cl in meta- position of XnPy decompose to a mixture of PdCl2 and metallic Pd (similarly to complexes with MenPy) whereas complexes with ortho-chlorine (in XnPy) decompose to the organopalladium products. Therefore, two different mechanisms of thermal decomposition are proposed for PdCl2(ClnPy)(2) and PdCl2(MenPy)(2). The results of complex thermal and structural analysis of a series of PdCl2(XnPy)(2) complexes allow us to get insight into the mechanism of nitrobenzene (NB) carbonylation catalyzed by PdCl2(XnPY)(2) at 150-180 degrees C. We conclude that the electron transfer from Pd(0) to nitrobenzene is the rate determining step of catalytic cycle of NB carbonylation. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available