4.2 Article

Manganese phthalocyanine immobilized on silica gel: Efficient and recyclable catalyst for single-step oxidative esterification of aldehydes with alcohols

Journal

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
Volume 363, Issue -, Pages 291-303

Publisher

ELSEVIER
DOI: 10.1016/j.molcata.2012.07.004

Keywords

Silica; Reusable catalyst; Green chemistry; Oxidative esterification; Manganese phthalocyanine

Funding

  1. University Grant Commission
  2. DU-DST PURSE grant

Ask authors/readers for more resources

The functionalization of silica gel was carried out using 3-aminopropyltriethoxysilane as a reactive surface modifier followed by covalent grafting of novel tetrakis-(2-methoxy-4-formylphenoxy)phthalocyaninato manganese(III) acetate complex. The resulting inorganic-organic hybrid material was found to be a highly selective and recyclable catalyst for the single-step synthesis of esters. The catalyst was characterized by elemental analysis (CHN), diffuse reflectance UV-visible, C-13 CPMAS and Si-29 CPMAS NMR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis, energy dispersive X-ray fluorescence (ED-XRF), Fourier-transform infrared (FT-IR) and atomic absorption spectroscopy (AAS) techniques, which demonstrates the covalent grafting of the complex onto functionalized silica gel. The catalytic performance of the novel inorganic-organic hybrid catalyst was evaluated in the direct oxidative esterification of aldehydes with alcohols, at ambient temperature, using hydrogen peroxide as an environment friendly oxidant. The hybrid catalyst presented up to 100% of substrate conversion with high turn-over numbers (TONS), up to 100% of selectivity toward the ester product, and can be recovered and reused for multiple cycles without appreciable loss in its catalytic activity. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available