4.7 Article

The Structure of Myristoylated Mason-Pfizer Monkey Virus Matrix Protein and the Role of Phosphatidylinositol-(4,5)-Bisphosphate in Its Membrane Binding

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 423, Issue 3, Pages 427-438

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2012.07.021

Keywords

retrovirus; M-PMV; myristoylated; protein structure; phosphatidylinositol

Funding

  1. Czech Science Foundation [P302/12/1895]
  2. Czech Ministry of Education [LH12011]
  3. National Institutes of Health [CA 27834]

Ask authors/readers for more resources

We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C-8 fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in P-31 chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P-2] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a C-13-filtered/C-13-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P-2 binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available