4.7 Article

Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 424, Issue 5, Pages 283-294

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2012.09.015

Keywords

electron microscopy; membrane protein; plant salt tolerance; protein structure; Na plus transport

Funding

  1. Factoria de Cristalizacion [BFU2011-25384, CSD2006-00015]
  2. Ministerio de Ciencia e Innovacion
  3. FEDER [BIO2011-28184-C02-02, MAT2009-12364, BIO2009-08641]
  4. Agencia Estatal Consejo Superior de Investigaciones Cientificas
  5. Ramon y Cajal [RYC-2008-03449]
  6. Agencia Estatal Consejo Superior de Investigaciones Cientificas [PIE-2008501072]

Ask authors/readers for more resources

The Arabidopsis thaliana Na+/H+ antiporter salt-overly-sensitive 1 (SOS1) is essential to maintain low intracellular levels of toxic Na+ under salt stress. Available data show that the plant SOS2 protein kinase and its interacting activator, the SOS3 calcium-binding protein, function together in decoding calcium signals elicited by salt stress and regulating the phosphorylation state and the activity of SOS1. Molecular genetic studies have shown that the activation implies a domain reorganization of the antiporter cytosolic moiety, indicating that there is a clear relationship between function and molecular structure of the antiporter. To provide information on this issue, we have carried out in vivo and in vitro studies on the oligomerization state of SOS1. In addition, we have performed electron microscopy and single-particle reconstruction of negatively stained full-length and active SOS1. Our studies show that the protein is a homodimer that contains a membrane domain similar to that found in other antiporters of the family and an elongated, large, and structured cytosolic domain. Both the transmembrane (TM) and cytosolic moieties contribute to the dimerization of the antiporter. The close contacts between the TM and the cytosolic domains provide a link between regulation and transport activity of the antiporter. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available