4.7 Article

Multi-Timescale Dynamics Study of FKBP12 Along the Rapamycin-mTOR Binding Coordinate

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 405, Issue 2, Pages 378-394

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.10.037

Keywords

enzyme inhibitor; molecular assembly; immunosuppressant; drug dynamics; cis-trans isomerase

Funding

  1. NIGMS NIH HHS [R01 GM083059] Funding Source: Medline

Ask authors/readers for more resources

Drugs can affect function in proteins by modulating their flexibility. Despite this possibility, there are very few studies on how drug binding affects the dynamics of target macromolecules. FKBP12 (FK506 binding protein 12) is a prolyl cis-trans isomerase and a drug target. The immunosuppressant drug rapamycin exerts its therapeutic effect by serving as an adaptor molecule between FKBP12 and the cell proliferation regulator mTOR (mammalian target of rapamycin). To understand the role of dynamics in rapamycin-based immunosuppression and to gain insight into the role of dynamics in the assembly of supramolecular complexes, we used N-15, C-13, and H-2 NMR spin relaxation to characterize FKBP12 along the binding coordinate that leads to cell cycle arrest. We show that sequential addition of rapamycin and mTOR leads to incremental rigidification of the FKBP12 backbone on the picosecond-nanosecond timescale. Both binding events lead to perturbation of main-chain and side-chain dynamics at sites distal to the binding interfaces, suggesting tight coupling interactions dispersed throughout the FKBP12 rapamycin interface. Binding of the first molecule, rapamycin, quenches microsecond-millisecond motions of the FKBP12 80's loop. This loop provides much of the surface buried at the protein protein interface of the ternary complex, leading us to assert that preorganization upon rapamycin binding facilitates binding of the second molecule, mTOR. Widespread microsecond-millisecond motions of the backbone persist in the drug-bound enzyme, and we provide evidence that these slow motions represent coupled dynamics of the enzyme and isomerization of the bound drug. Finally, the pattern of microsecond-millisecond dynamics reported here in the rapamycin complex is dramatically different from the pattern in the complex with the structurally related drug FK506. This raises the important question of how two complexes that are highly isomorphic based on high-resolution static models have such different flexibilities in solution. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available