4.7 Article

A Comprehensive Analysis of Structural and Sequence Conservation in the TetR Family Transcriptional Regulators

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 400, Issue 4, Pages 847-864

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.05.062

Keywords

tetracycline repressor; allostery; ligand binding; DNA binding; conservation analysis

Funding

  1. Canadian Institutes of Health Research [MOP-13609]
  2. National Institutes of Health [P50-GM62413-02]
  3. Ontario Graduate Scholarship

Ask authors/readers for more resources

The tetracycline repressor family transcriptional regulators (TFRs) are homodimeric DNA-binding proteins that generally act as transcriptional repressors. Their DNA-binding activity is allosterically inactivated by the binding of small-molecule ligands. TFRs constitute the third most frequently occurring transcriptional regulator family found in bacteria with more than 10,000 representatives in the nonredundant protein database. In addition, more than 100 unique TFR structures have been solved by X-ray crystallography. In this study, we have used computational and experimental approaches to reveal the variations and conservation present within TFRs. Although TFR structures are very diverse, we were able to identify a conserved central triangle in their ligand-binding domains that forms the foundation of the structure and the framework for the ligand-binding cavity. While the sequences of DNA-binding domains of TFRs are highly conserved across the whole family, the sequences of their ligand-binding domains are so diverse that pairwise sequence similarity is often undetectable. Nevertheless, by analyzing subfamilies of TFRs, we were able to identify distinct regions of conservation in ligand-binding domains that may be important for allostery. To aid in large-scale analyses of TFR function, we have developed a simple and reliable computational approach to predict TFR operator sequences, a temperature melt-based assay to measure DNA binding, and a generic ligand-binding assay that will likely be applicable to most TFRs. Finally, our analysis of TFR structures highlights their flexibility and provides insight into a conserved allosteric mechanism for this family. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available