4.7 Article

Bacillus anthracis Surface-Layer Proteins Assemble by Binding to the Secondary Cell Wall Polysaccharide in a Manner that Requires csaB and tagO

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 401, Issue 5, Pages 757-775

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.06.059

Keywords

Bacillus anthracis; secondary cell wall polysaccharide; surface-layer; pyruvylation; tagO

Funding

  1. National Institute of Allergy and Infectious Diseases, Infectious Diseases Branch [AI69227]
  2. University of Chicago [GM007183]
  3. National Institute of Allergy and Infectious Diseases [1-U54-AI-057153]

Ask authors/readers for more resources

Bacillus anthracis, the causative agent of anthrax, requires surface (S)-layer proteins for the pathogenesis of infection. Previous work characterized S-layer protein binding via the surface layer homology domain to a pyruvylated carbohydrate in the envelope of vegetative forms. The molecular identity of this carbohydrate and the mechanism of its display in the bacterial envelope are still unknown. Analyzing acid-solubilized, purified carbohydrates by mass spectrometry and NMR spectroscopy, we identify secondary cell wall polysaccharide (SCWP) as the ligand of S-layer proteins. In agreement with the model that surface layer homology domains bind to pyruvylated carbohydrate, SCWP was observed to be linked to pyruvate in a manner requiring csaB, the only structural gene known to be required for S-layer assembly. B. anthracis does not elaborate wall teichoic acids; however, its genome harbors tagO and tagA, genes responsible for the synthesis of the linkage unit that tethers teichoic acids to the peptidoglycan layer. The tagO gene appears essential for B. anthracis growth and complements the tagO mutant phenotypes of staphylococci. Tunicamycin-mediated inhibition of TagO resulted in deformed, S-layer-deficient bacilli. Together, these results suggest that tagO-mediated assembly of linkage units tethers pyruvylated SCWP to the B. anthracis envelope, thereby enabling S-layer assembly and providing for the pathogenesis of anthrax infections. (C) 2010 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available