4.7 Article

Myosin Isoform Determines the Conformational Dynamics and Cooperativity of Actin Filaments in the Strongly Bound Actomyosin Complex

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 396, Issue 3, Pages 501-509

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2009.11.063

Keywords

actin; dynamics; phosphorescence; non-muscle myosin; allostery

Funding

  1. National Institutes of Health [AR32961, AG26160, GM071688, F31 DC009143]
  2. American Heart Association [0940075N, 0655849T]
  3. National Science Foundation [MCB-0546353]
  4. Hellman Family Fellow
  5. Yale Institute for Nanoscience and Quantum Engineering

Ask authors/readers for more resources

We used transient phosphorescence anisotropy to detect the microsecond rotational dynamics of erythrosin-iodoacetamide-labeled actin strongly bound to single-headed fragments of muscle myosin subfragment 1 (S1) and non-muscle myosin V (NW). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at substoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than with muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects: muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly and muscle myosin binds more slowly to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound erythrosin iodoacetamide: while muscle SI increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex are determined by the isoform of the bound myosin in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available