4.7 Article

Crystal Structures of α-Crystallin Domain Dimers of αB-Crystallin and Hsp20

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 392, Issue 5, Pages 1242-1252

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2009.07.069

Keywords

alpha B-crystallin; Hsp20; Hsp27; Hsp22; chaperone

Funding

  1. Medical Research Council of UK
  2. MRC [G8303198] Funding Source: UKRI
  3. Medical Research Council [G8303198] Funding Source: researchfish

Ask authors/readers for more resources

Small heat shock proteins (sHsps) are a family of large and dynamic oligomers highly expressed in long-lived cells of muscle, lens and brain. Several family members are upregulated during stress, and some are strongly cytoprotective. Their polydispersity has hindered high-resolution structure analyses, particularly for vertebrate sHsps. Here, crystal structures of excised alpha-crystallin domain from rat Hsp20 and that from human alpha B-crystallin show that they form homodimers with a shared groove at the interface by extending a beta sheet. However, the two dimers differ in the register of their interfaces. The dimers have empty pockets that in large assemblies will likely be filled by hydrophobic sequence motifs from partner chains. In the Hsp20 dimer, the shared groove is partially filled by peptide in polyproline 11 conformation. Structural homology with other sHsp crystal structures indicates that in full-length chains the groove is likely filled by an N-terminal extension. Inside the groove is a symmetry-related functionally important arginine that is mutated, or its equivalent, in family members in a range of neuromuscular diseases and cataract. Analyses of residues within the groove of the alpha B-crystallin interface show that it has a high density of positive charges. The disease mutant R120G alpha-crystallin domain dimer was found to be more stable at acidic pH, suggesting that the mutation affects the normal dynamics of sHsp assembly. The structures provide a starting point for modelling higher assembly by defining the spatial locations of grooves and pockets in a basic dimeric assembly unit. The structures provide a high-resolution view of a candidate functional state of an sHsp that could bind non-native client proteins or specific components from cytoprotective pathways. The empty pockets and groove provide a starting model for designing drugs to inhibit those sHsps that have a negative effect on cancer treatment. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available