4.7 Article

A dominant conformational role for amino acid diversity in minimalist protein-protein interfaces

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 381, Issue 2, Pages 407-418

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.06.014

Keywords

protein engineering; molecular recognition; scanning mutagenesis; antibody mimic; binding hot spot

Funding

  1. National Institute of Health [ROI-GM72688, R21-CA132700, U54 GM74946]
  2. University of Chicago Cancer Research Center
  3. National Cancer Institute [Y1-CO-1020]
  4. National Institute of General Medical Science [Y1-GM-1104]
  5. U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]
  6. [T32 GM007183-32A1]

Ask authors/readers for more resources

Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed monobodies. One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available