4.3 Article

Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses

Journal

JOURNAL OF MODERN OPTICS
Volume 58, Issue 16, Pages 1486-1497

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09500340.2011.597519

Keywords

radiation damage; X-ray free electron laser; molecular dynamics; non-LTE

Categories

Funding

  1. Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]
  2. Swedish Research Foundation
  3. Helmholtz Association through the Center for Free-Electron Laser Science
  4. NSF [MCB-1021557]
  5. Swedish National Infrastructure for Computing
  6. UPPMAX [p2009018]

Ask authors/readers for more resources

The Linac Coherent Light Source (LCLS) is the first X-ray free electron laser to achieve lasing at subnanometer wavelengths (6 angstrom). LCLS is poised to reach even shorter wavelengths (1.5 angstrom) and thus holds the promise of single molecular imaging at atomic resolution. The initial operation at a photon energy of 2 keV provides the possibility to perform the first experiments on damage to biological particles, and to assess the limitations to coherent imaging of biological samples, which are directly relevant at atomic resolution. In this paper we theoretically investigate the damage formation and detection possibilities for a biological crystal, by employing and comparing two different damage models with complementary strengths. Molecular dynamics provides a discrete approach which investigates structural details at the atomic level by tracking all atoms in the real space. Our continuum model is based on a non-local thermodynamics equilibrium code with atomic kinetics and radiation transfer and can treat hydrodynamic expansion of the entire system. The latter approach captures the essential features of atomic displacements, without taking into account structural information and intrinsic atomic movements. This proves to be a powerful computational tool for many samples, including biological crystals, which will be studied with X-ray free electron lasers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available