4.4 Article Proceedings Paper

Towards a nanostructured thermoelectric generator using ion-track lithography

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/18/10/104015

Keywords

-

Funding

  1. EPSRC [EP/D076250/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/D076250/1] Funding Source: researchfish

Ask authors/readers for more resources

This paper presents the process development towards a new generation of nanostructured thermoelectric generators for power harvesting from small temperature gradients by using a combination of traditional silicon microfabrication techniques, electroplating and submicron ion-track nanolithography. Polyimide nanotemplates with pore diameters ranging from 30 nm to 120 nm were fabricated. Preliminary results from the fabrication of poly(methyl methacrylate) (PMMA)-nanostructured templates are reported. Bi2Te3 nanowires (80 and 120 nm diameters) were electroplated into polyimide ion-track nanotemplates. Bi2Te3 nanowires of a R3 m structure, with preferential orientation in (1 1 0) crystallographic plans, were electroplated. The chemical composition of Bi2Te3 with nearly stoichiometric composition (Bi2.31Te3) was obtained. Homogeneity profiles of the chemical composition were obtained. A fine-grained observed microstructure (6-10 nm) and (1 1 0) crystalline orientation were obtained, which is extremely promising for improving the thermoelectric material properties. The thermoelectric properties of the Bi2Te3-electroplated thin films (Seebeck coefficient a) and electrical resistivity of the Bi2Te3 bundle nanowires were found to be - 52 mu V K-1 and similar to 14 M Omega cm, respectively. Polyimide (Kapton foil) and PMMA 950 photoresists were promising materials for the realization of a nanostructured thermoelectric generator on flexible and rigid substrates, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available