4.5 Article

Resonant PZT MEMS Scanner for High-Resolution Displays

Journal

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
Volume 21, Issue 6, Pages 1303-1310

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2012.2209405

Keywords

High-frequency laser beam scanning; lead zirconate titanate (PZT) thin-film-actuated; microelectromechanical systems (MEMS); MEMS mirror; resonant scanner

Funding

  1. Microvision Inc., USA
  2. FP7 project PiezoVolume

Ask authors/readers for more resources

A resonant piezoelectric scanner is developed for high-resolution laser-scanning displays. A novel actuation scheme combines the principle of mechanical amplification with lead zirconate titanate (PZT) thin-film actuation. Sinusoidal actuation with 24 V at the mechanical resonance frequency of 40 kHz provides an optical scan angle of 38.5 degrees for the 1.4-mm-wide mirror. This scanner is a significant step toward achieving full-high-definition resolution (1920 x 1080 pixels) in mobile laser projectors without the use of vacuum packaging. The reported piezoscanner requires no bulky components and consumes < 30-mW power at maximum deflection, thus providing significant power and size advantages, compared with reported electromagnetic and electrostatic scanners. Interferometry measurements show that the dynamic deformation is at acceptable levels for a large fraction of the mirror and can be improved further for diffraction-limited performance at full resolution. A design variation with a segmented electrode pair illustrated that reliable angle sensing can be achieved with PZT for closed-loop control of the scanner. [2012-0116]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available