4.5 Article

Thermal Degradation of Electroplated Nickel Thermal Microactuators

Journal

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
Volume 18, Issue 6, Pages 1279-1287

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2009.2034394

Keywords

Back bending; electroplating; oxidation; plastic deformation; thermal actuator; thermal degradation

Funding

  1. Engineering and Physical Sciences Research Council [EP/D051266]
  2. EPSRC [EP/D051266/1] Funding Source: UKRI

Ask authors/readers for more resources

In this paper, the thermal degradation of laterally operating thermal actuators made from electroplated nickel has been studied. The actuators investigated delivered a maximum displacement of ca. 20 mu m at an average temperature of similar to 450 degrees C, which is much lower than that of typical silicon-based microactuators. However, the magnitude of the displacement strongly depended on the frequency and voltage amplitude of the pulse signal applied. Back bending was observed at maximum temperatures as low as 240 degrees C. Both forward and backward displacements increase as the applied power was increased up to a value of 60 mW; further increases led to reductions in the magnitudes of both displacements. Scanning electron microscopy clearly showed that the nickel beams began to deform and change their shape at this critical power level. Compressive stress is responsible for nickel pileup, while tensile stresses, generated upon removing the current, are responsible for necking at the hottest section of the hot arm of the device. Energy dispersive X-ray diffraction analysis also revealed the severe oxidation of Ni structure induced by Joule heating. The combination of plastic deformation and oxidation was responsible for the observed thermal degradation. Results indicate that nickel thermal microactuators should be operated below 200 degrees C to avoid thermal degradation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available