4.4 Article

Comparative Proteomics Analysis of Sarcoshie Insoluble Outer Membrane Proteins from Clarithromycin Resistant and Sensitive Strains of Helicobacter pylori

Journal

JOURNAL OF MICROBIOLOGY
Volume 51, Issue 5, Pages 612-618

Publisher

MICROBIOLOGICAL SOCIETY KOREA
DOI: 10.1007/s12275-013-3029-5

Keywords

outer membrane protein; clarithromycin; antibiotic resistance

Categories

Ask authors/readers for more resources

Helicobacter pylori causes disease manifestations in humans including chronic gastric and peptic ulcers, gastric cancer, and lymphoid tissue lymphoma. Increasing rates of H. pylori clarithromycin resistance has led to higher rates of disease development. Because antibiotic resistance involves modifications of outer membrane proteins (OMP) in other Gram-negative bacteria, this study focuses on identification of H. pylori OMP's using comparative proteomic analyses of clarithromycin-susceptible and -resistant H. pylori strains. Comparative proteomics analyses of isolated sarcosine-insoluble OMP fractions from clarithromycin-susceptible and -resistant H. pylori strains were performed by 1) one dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis protein separation and 2) in-gel digestion of the isolated proteins and mass spectrometry analysis by Matrix Assisted Laser Desorption Ionization-tandem mass spectrometry. Iron-regulated membrane protein, UreaseB, EF-Tu, and putative OMP were down-regulated; HopT (BabB) transmembrane protein, HofC, and OMP31 were up-regulated in clarithromycin-resistant H. pylon. Western blotting and real time PCR, respectively, validated UreaseB subunit and EF-Tu changes at the protein level, and mRNA expression of HofC and HopT. This limited proteomic study provides evidence that alteration of the outer membrane proteins' profile may be a novel mechanism involved in clarithromycin resistance in H. pylori.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available