4.3 Article

Estimation method for serial dilution experiments

Journal

JOURNAL OF MICROBIOLOGICAL METHODS
Volume 107, Issue -, Pages 214-221

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mimet.2014.08.023

Keywords

Titration; Serial dilution; Viable bacterial counts; Agar plates; Too numerous to count (TNTC); Density (concentration) of microorganisms

Ask authors/readers for more resources

Titration of microorganisms in infectious or environmental samples is a corner stone of quantitative microbiology. A simple method is presented to estimate the microbial counts obtained with the serial dilution technique for microorganisms that can grow on bacteriological media and develop into a colony. The number (concentration) of viable microbial organisms is estimated from a single dilution plate (assay) without a need for replicate plates. Our method selects the best agar plate with which to estimate the microbial counts, and takes into account the colony size and plate area that both contribute to the likelihood of miscounting the number of colonies on a plate. The estimate of the optimal count given by our method can be used to narrow the search for the best (optimal) dilution plate and saves time. The required inputs are the plate size, the microbial colony size, and the serial dilution factors. The proposed approach shows relative accuracy well within +/- 0.1 log(10) from data produced by computer simulations. The method maintains this accuracy even in the presence of dilution errors of up to 10% (for both the aliquot and diluent volumes), microbial counts between 10(4) and 10(12) colony-forming units, dilution ratios from 2 to 100, and plate size to colony size ratios between 625 to 200. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available