4.7 Article

Submerged membrane hybrid systems as pretreatment in seawater reverse osmosis (SWRO): Optimisation and fouling mechanism determination

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 411, Issue -, Pages 173-181

Publisher

ELSEVIER
DOI: 10.1016/j.memsci.2012.04.029

Keywords

Adsorption; Coagulation; Membrane fouling; Modelling; Submerged membrane hybrid system

Funding

  1. National Centre of Excellence in Desalination (membrane flocculation hybrid system as pretreatment to brackish and seawater reverse osmosis desalination system)

Ask authors/readers for more resources

Three different submerged membrane hybrid systems (SMHSs) namely submerged membrane coagulation hybrid system (SMCHS), submerged membrane adsorption hybrid system (SMAHS), and submerged membrane coagulation-adsorption hybrid system (SMCAHS) were studied as pretreatment systems to seawater reverse osmosis (SWRO). The performances of these SMHSs were compared with that of submerged membrane system (without any coagulation or adsorption) in terms of trans-membrane pressure (TMP) development, critical flux, ultrafilter modified fouling index (UF-MFI), dissolved organic carbon (DOC) removal efficiency, and the removal of detailed organic fractions. The experimental results show that pretreatment by SMCAHS led to the best results in terms of organic removal and critical flux. With the low doses of ferric chloride (FeCl3) and powder activated carbon (PAC) of 0.5 mg of Fe3+/L and 0.5 g of PAC/L, respectively, this hybrid system could remove 72% of DOC and reduce the UF-MFI nearly five times. The initial DOC and UF-MFI of seawater used in this study were 2.53 mg/L and 14,165 s/L-2, respectively. The application of three different membrane fouling models namely pore blockage, pore constriction, and cake formation models showed that cake formation was the predominant fouling mechanisms causing fouling in SMHSs. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available