4.7 Article

Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 325, Issue 1, Pages 92-97

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2008.07.003

Keywords

Macrovoid; Morphology; Phase diagram; Vitrification; Polyethersulfone

Funding

  1. Iran National Science Foundation (INSF) [84122]

Ask authors/readers for more resources

The morphological structure of membranes prepared from two nearly similar systems consisting of water/N,N-dimethylacetamide (DMAc)/polyethersulfone (PES) and water/N-methyl-2-pyrrolidone (NMP)/polyethersulfone (PES) has been studied. The morphology of the prepared membranes showed that both systems exhibit an instantaneous liquid-liquid demixing that leads to the formation of macrovoids in the resulting structures. Nevertheless, the resulting macrovoid structures were contrary to the generally accepted concepts concerning macrovoid formation. The membranes morphologies showed that in spite of better miscibility between water and DMAc, which must promote the formation of channel-and finger-like structures, more sponge-like structures were observed in membranes prepared from the water/DMAc/PES system compared to those prepared from the water/NMP/PES system. To find the source of this unexpected phenomenon, the complete ternary phase diagrams consisting of theoretical binodal curves, vitrification boundaries, and gelation boundaries were constructed for both systems and it was shown that gelation process occurs earlier in the water/DMAc/PES system compared to the other system, which inhibits the growth of macrovoids in this system. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available