4.7 Article

Effects of polyaniline chain structures on proton conduction in a PEM host matrix

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 307, Issue 1, Pages 126-135

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2007.09.025

Keywords

polyaniline; AMPS; proton conductivity; oxidation state; PEM

Ask authors/readers for more resources

This study examined the effects of the conjugated chain structure of polyaniline (PAn) on proton transport in a proton exchange membrane (PEM) containing a small amount of PAn colloidal particles. The PEM host matrix consisted of a hydrophobic three-component polymer blend (TCPB) of poly(4-vinylphenol-co-methylmethacrylate) P(4-VP-MMA), poly(butyl methacrylate) (PBMA), and Paraloid (R) B-82 acrylic copolymer resins; in which a hydrophilic network of 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)dimethylacrylate (PEGDMA) was formed upon embedded polymerization. Colloidal PAn particles were added to the PEM matrix during the embedded polymerization of PEM. Two types of PAn colloidal particles with different chain structures and morphologies were synthesized by inverse miniemulsion polymerization and interfacial polymerization. The PAn(l) particles from inverse miniemulsion polymerization were barshaped, contained a higher fraction of quinoid diimine units than the scaffold-like PAn(2) particles from interfacial polymerization, and displayed a strong promotional effect on proton conduction. The oxidation state of the PAn particles was also varied by post-synthesis treatments to evaluate the effect of oxidation state on proton conduction. It was found that a mixed oxidation state such as the emeraldine form of PAn had the best enhancement effect. The PAn loading optimal for proton conductivity enhancement of the composite PEM was determined to be about 2 wt% of PAn(1). (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available