4.7 Article

Discovery of 3-Cyano-N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridin-5-yObenzamide: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor Related Orphan Receptor C2 Inverse Agonist

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 61, Issue 23, Pages 10415-10439

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.8b00392

Keywords

-

Funding

  1. Industrial Macromolecular Crystallography Association
  2. Hauptman-Woodward Medical Research Institute
  3. DOE Office of Science [DE-AC02-06CH11357]

Ask authors/readers for more resources

The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as ROR gamma t) is a promising target for the treatment of autoimmune diseases. A small molecule, inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, we identified a molecule displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms. Lead optimization to improve the potency and metabolic stability of this hit focused on two key design strategies, namely, iterative optimization driven by increasing lipophilic efficiency and structure-guided conformational restriction to achieve optimal ground state energetics and maximize receptor residence time. This approach successfully identified 3-cyano- N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 H-pyrrolo[2,3- b]pyridin-5-yl)benzamide as a potent and selective RORC2 inverse agonist, demonstrating good metabolic stability, oral bioavailability, and the ability to reduce IL-17 levels and skin inflammation in a preclinical in vivo animal model upon oral administration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available