4.7 Article

Structure-Based Design of Orally Bioavailable 1H-Pyrrolo[3,2-c]pyridine Inhibitors of Mitotic Kinase Monopolar Spindle 1 (MPS1)

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 56, Issue 24, Pages 10045-10065

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm401395s

Keywords

-

Funding

  1. Cancer Research UK [C309/A8274, C309/A11566]
  2. Breakthrough Breast Cancer
  3. NHS
  4. Cancer Research UK [11566] Funding Source: researchfish

Ask authors/readers for more resources

The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly over-expressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available