4.7 Article

GC-Targeted C8-Linked Pyrrolobenzodiazepine-Biaryl Conjugates with Femtomolar in Vitro Cytotoxicity and in Vivo Antitumor Activity in Mouse Models

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 56, Issue 7, Pages 2911-2935

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm301882a

Keywords

-

Funding

  1. Commonwealth Commission UK [BDCA 05/01]
  2. Cancer Research UK (CRUK) [C180/A1060]
  3. Cancer Research UK [16569] Funding Source: researchfish

Ask authors/readers for more resources

DNA binding 4-(1-methyl-1H-pyrrol-3-yl)-benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-kappa B with its cognate DNA binding sequence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available