4.7 Article

Identification of Inhibitors that Block Vaccinia Virus Infection by Targeting the DNA Synthesis Processivity Factor D4

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 54, Issue 9, Pages 3260-3267

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm101554k

Keywords

-

Funding

  1. National Institutes of Health [5U01-A1 082211]

Ask authors/readers for more resources

Smallpox was globally eradicated 30 years ago by vaccination. The recent threat of bioterrorism demands the development of improved vaccines and novel therapeutics to effectively preclude a reemergence of smallpox. One new therapeutic target is the vaccinia poxvirus processivity complex, comprising D4 and A20 proteins that enable the viral E9 DNA polymerase to synthesize extended strands. Five compounds identified from an AlphaScreen assay designed to disrupt A20:D4 binding were shown to be effective in: (i) blocking vaccinia processive DNA synthesis in vitro, (ii) preventing cellular infection with minimal cytotoxicity, and (iii) binding to D4, as evidenced by ThermoFluor. The EC50 values for inhibition of viral infectivity ranged from 9.6 to 23 mu M with corresponding selectivity indices (cytotoxicity CC50/viral infectivity EC50) of 3.9 to 17.8. The five compounds are thus potential therapeutics capable of halting smallpox DNA synthesis and infectivity through disruptive action against a component of the vaccinia processivity complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available