4.7 Article

Impact of Plasticity and Flexibility on Docking Results for Cytochrome P450 2D6: A Combined Approach of Molecular Dynamics and Ligand Docking

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 51, Issue 23, Pages 7469-7477

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm801005m

Keywords

-

Funding

  1. The Netherlands Organization for Scientific Research [935.18.018]
  2. VENI [700.55.401]

Ask authors/readers for more resources

Cytochrome P450s (CYPs) exhibit a large plasticity and flexibility in the active site allowing for the binding, of a large variety of substrates. The impact of plasticity and flexibility on ligand binding is investigated by docking 65 known CYP2D6 substrates to ail ensemble of 2500 protein structures. The ensemble was generated by molecular dynamics simulations of CYP2D6 in complex with five representative Substrates. The effect of induced fit, the conformation of Phe483, and thermal motion on the accuracy of site of metabolism (SOM) predictions is analyzed. For future predictions, the three most essential CYP2D6 Structures were selected which are suitable for different kinds of ligands. We have developed a binary decision tree to decide which protein Structure to clock the ligand into, Such that each ligand needs to be docked only once, leading to successful SOM prediction in 80% of the substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available