4.7 Article

Structure-guided design of C2-symmetric HIV-1 protease enhibitors based on a pyrrolidine scaffold

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 51, Issue 7, Pages 2078-2087

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm701142s

Keywords

-

Ask authors/readers for more resources

Infections with the human immunodeficiency virus, which inevitably lead to the development of AIDS, are still among the most serious global health problems causing more than 2.5 million deaths per year. In the pathophysiological processes of this pandemic, HIV protease has proven to be an invaluable drug target because of its essential role in the virus' replication process. By use of pyrrolidine as core structure, symmetric 3,4-bis-N-alkylsulfonamides were designed and synthesized enantioselectively from D-(-)-tartaric acid as a new class of HIV protease inhibitors. Structure-guided design using the cocrystal structure of an initial lead as starting point resulted in a second series of inhibitors with improved affinity. The binding modes of four representatives were determined by X-ray crystallography to elucidate the underlying factors accounting for the SAR. With this information for further rational design, the combination of suitable side chains resulted in a final inhibitor showing a significantly improved affinity of K(i) = 74 nM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available