4.7 Article

Combining Ligand-Based Pharmacophore Modeling, Quantitative Structure-Activity Relationship Analysis and in Silico Screening for the Discovery of New Potent Hormone Sensitive Lipase Inhibitors

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 51, Issue 20, Pages 6478-6494

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm800718k

Keywords

-

Funding

  1. Faculty of Graduate Studies
  2. Hamdi-Mango Center

Ask authors/readers for more resources

Hormone sensitive lipase (HSL) has been recently implicated in diabetes and obesity, prompting attempts to discover new HSL inhibitors. Toward this end, we explored the pharmacophoric space of HSL inhibitors using four diverse sets of compounds. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of yielding a self-consistent and predictive quantitative structure-activity relationship (QSAR) (r = 0.822, n = 99, F = 11. 1, r(Loo)(2) = 0.521, r(PRESS)(2) against 23 external test inhibitors = 0.522). Interestingly, two pharmacophoric models emerged in the QSAR equation suggesting at least two binding modes. These pharmacophores were employed to screen the National Cancer Institute (NCI) list of compounds and our in-house built database of established drugs and agrochemicals. Active hits included the safe herbicidal agent bifenox (IC50 = 0.43 mu M) and the nonsteroidal anti-inflammatory naproxen (IC50 = 1.20 mu M). Our active hits undermined the traditional believe that HSL inhibitors should possess covalent bond-forming groups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available