4.5 Article

Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations

Journal

JOURNAL OF MEDICAL GENETICS
Volume 51, Issue 8, Pages 537-544

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/jmedgenet-2014-102405

Keywords

-

Funding

  1. British Heart Foundation
  2. BHF [PG08/008]
  3. National Institute for Health Research University College London Hospitals Biomedical Research Centre
  4. MRC CASE
  5. MRC [G1001158]
  6. MRC [G1001158] Funding Source: UKRI
  7. British Heart Foundation [RG/08/008/25291] Funding Source: researchfish
  8. Medical Research Council [G1001158] Funding Source: researchfish
  9. National Institute for Health Research [NF-SI-0510-10268] Funding Source: researchfish

Ask authors/readers for more resources

Background Familial hypercholesterolaemia (FH) is an autosomal dominant disease of lipid metabolism, which leads to early coronary heart disease. Mutations in LDLR, APOB and PCSK9 can be detected in 80% of definite FH (DFH) patients. This study aimed to identify novel FH-causing genetic variants in patients with no detectable mutation. Methods and results Exomes of 125 unrelated DFH patients were sequenced, as part of the UK10K project. First, analysis of known FH genes identified 23 LDLR and two APOB mutations, and patients with explained causes of FH were excluded from further analysis. Second, common and rare variants in genes associated with low-density lipoprotein cholesterol (LDL-C) levels in genome-wide association study (GWAS) meta-analysis were examined. There was no clear rare variant association in LDL-C GWAS hits; however, there were 29 patients with a high LDL-C SNP score suggestive of polygenic hypercholesterolaemia. Finally, a gene-based burden test for an excess of rare (frequency <0.005) or novel variants in cases versus 1926 controls was performed, with variants with an unlikely functional effect (intronic, synonymous) filtered out. Conclusions No major novel locus for FH was detected, with no gene having a functional variant in more than three patients; however, an excess of novel variants was found in 18 genes, of which the strongest candidates included CH25H and INSIG2 (p<4.3x10(-4) and p<3.7x10(-3), respectively). This suggests that the genetic cause of FH in these unexplained cases is likely to be very heterogeneous, which complicates the diagnostic and novel gene discovery process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available