4.3 Article

Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory

Journal

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
Volume 27, Issue 9, Pages 2645-2658

Publisher

KOREAN SOC MECHANICAL ENGINEERS
DOI: 10.1007/s12206-013-0709-3

Keywords

DWBNNT; Fluid flow; Viscoelastic Pasternak medium; Electric potential

Funding

  1. University of Kashan [65475/44]
  2. Iranian Nanotechnology Development Committee

Ask authors/readers for more resources

Nonlinear free vibration and instability of fluid-conveying double-walled boron nitride nanotubes (DWBNNTs) embedded in viscoelastic medium are studied in this paper. The effects of the transverse shear deformation and rotary inertia are considered by utilizing the Timoshenko beam theory. The size effect is applied by the modified couple stress theory and considering a material length scale parameter for beam model. The nonlinear effect is considered by the Von Karman type geometric nonlinearity. The electromechanical coupling and charge equation are employed to consider the piezoelectric effect. The surrounding viscoelastic medium is described as the linear visco-Pasternak foundation model characterized by the spring and damper. Hamilton's principle is used to derive the governing equations and boundary conditions. The differential quadrature method (DQM) is employed to discretize the nonlinear higher-order governing equations, which are then solved by a direct iterative method to obtain the nonlinear vibration frequency and critical fluid velocity of fluid-conveying DWBNNTs with clamped-clamped (C-C) boundary conditions. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, spring and damping constants of surrounding viscoelastic medium and fluid velocity on the nonlinear free vibration, instability and electric potential distribution of DWBNNTs. This study might be useful for the design and smart control of nano devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available