4.5 Article

A Computational Design Method for a Shape Memory Alloy Wire Actuated Compliant Finger

Journal

JOURNAL OF MECHANICAL DESIGN
Volume 131, Issue 2, Pages -

Publisher

ASME
DOI: 10.1115/1.3042152

Keywords

design engineering; dexterous manipulators; optimisation; shape memory effects

Ask authors/readers for more resources

This paper presents a computational method to design a compliant finger for robotic manipulations. As traditional mechanical fingers require bulky electromagnetic motors and numerous relative moving parts to achieve dexterous motion, we propose a class of fingers; the manipulation of which relies on finger deflections. These compliant fingers are actuated by shape memory alloy (SMA) wires that exhibit high work-density, frictionless, and quiet operations. The combination of compliant members with embedded SMA wires makes the finger more compact and lightweight. Various SMA wire layouts are investigated to reduce their response time while maintaining sufficient output force. The mathematical models of finger deflection caused by SMA contraction are then derived along with experimental validations. As finger shapes are essential to the range of deflected motion and output force, we find its optimal initial shapes through the use of a shape parametrization technique. We further illustrate our method by designing a humanoid finger that is capable of three-dimensional manipulation. Since compliant fingers can be fabricated monolithically, we expect the proposed design method to be utilized for applications of various scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available