4.4 Article

Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth

Journal

JOURNAL OF MATHEMATICAL BIOLOGY
Volume 67, Issue 6-7, Pages 1457-1485

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00285-012-0595-9

Keywords

Bayesian probability; Calibration; Validation; Uncertainty quantification; Tumor growth models

Funding

  1. Department of Energy [DE-FC52-08NA28615]
  2. National Science Foundation [1115865]
  3. Netherlands Organisation for Scientific Research (NWO) via the Innovational Research Incentives Scheme (IRIS), Veni grant [639.031.033]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Mathematical Sciences [1115865] Funding Source: National Science Foundation

Ask authors/readers for more resources

The idea that one can possibly develop computational models that predict the emergence, growth, or decline of tumors in living tissue is enormously intriguing as such predictions could revolutionize medicine and bring a new paradigm into the treatment and prevention of a class of the deadliest maladies affecting humankind. But at the heart of this subject is the notion of predictability itself, the ambiguity involved in selecting and implementing effective models, and the acquisition of relevant data, all factors that contribute to the difficulty of predicting such complex events as tumor growth with quantifiable uncertainty. In this work, we attempt to lay out a framework, based on Bayesian probability, for systematically addressing the questions of Validation, the process of investigating the accuracy with which a mathematical model is able to reproduce particular physical events, and Uncertainty quantification, developing measures of the degree of confidence with which a computer model predicts particular quantities of interest. For illustrative purposes, we exercise the process using virtual data for models of tumor growth based on diffuse-interface theories of mixtures utilizing virtual data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available