4.4 Article

Optimal orientation in branched cytoskeletal networks

Journal

JOURNAL OF MATHEMATICAL BIOLOGY
Volume 63, Issue 4, Pages 735-755

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00285-010-0389-x

Keywords

Actin cytoskeleton; Lamellipodia; Dendritic nucleation model

Funding

  1. [DMR-0654373]

Ask authors/readers for more resources

Actin cytoskeletal protrusions in crawling cells, or lamellipodia, exhibit various morphological properties such as two characteristic peaks in the distribution of filament orientation with respect to the leading edge. To understand these properties, using the dendritic nucleation model as a basis for cytoskeletal restructuring, a kinetic-population model with orientational-dependent branching (birth) and capping (death) is constructed and analyzed. Optimizing for growth yields a relation between the branch angle and filament orientation that explains the two characteristic peaks. The model also exhibits a subdominant population that allows for more accurate modeling of recent measurements of filamentous actin density along the leading edge of lamellipodia in keratocytes. Finally, we explore the relationship between orientational and spatial organization of filamentous actin in lamellipodia and address recent observations of a prevalence of overlapping filaments to branched filaments-a finding that is claimed to be in contradiction with the dendritic nucleation model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available