4.5 Article

The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery

Journal

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
Volume 24, Issue 10, Pages 2381-2390

Publisher

SPRINGER
DOI: 10.1007/s10856-013-4994-2

Keywords

-

Ask authors/readers for more resources

A facile method was used to prepare polydopamine (PDA) nanoparticles. The effect of the initial pH of the dopamine solution on the formation kinetics, chemical structure, and biocompatibility of PDA nanoparticles was evaluated. Additionally, camptothecin (CPT) was chosen as a model anti-cancer drug with which to evaluate the efficiency of drug loading and release behavior of PDA nanoparticles. The results indicated that the size and yield of PDA nanoparticles, consisting of quinoid and indoline species, were closely related to the pH value of the precursor solution. At a reaction time of 6 h, the uniform particle sizes of PDA nanoparticles were similar to 400, 250, 150, and 75 nm in solutions with initial pH values of 7.5, 8, 8.5, and 9, respectively, and with corresponding yields of 3, 7, 20, and 34 %. The amounts of CPT loaded in 1 mg of PDA nanoparticles synthesized at pH values of 7.5, 8, 8.5, and 9 for 6 h were 10.85, 11.81, 10.17, and 6.19 mu g, respectively. After the first day, 19, 20, 25, and 36 % of the CPT was released from PDA nanoparticles synthesized at pH values of 7.5, 8, 8.5, and 9, respectively, depending on the particle size. The PDA nanoparticles had excellent haemocompatibility: there was no apparent hemolysis, and they did not cause acute toxicity in A549 and HeLa cells. The loading of CPT into PDA nanoparticles significantly reduced the viability of A549 and HeLa cells, comparable to free CPT. It can be concluded that the PDA nanoparticles prepared by our facile method are potential carriers of anticancer drugs for cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available