4.5 Article

Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering

Journal

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
Volume 24, Issue 8, Pages 1843-1851

Publisher

SPRINGER
DOI: 10.1007/s10856-013-4954-x

Keywords

-

Funding

  1. National Natural Science Foundation of China [31071265, 30900297]
  2. Research Fund for the Doctoral Program of Higher Education [20090141120055]

Ask authors/readers for more resources

Chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites were synthesized by a novel in situ precipitation method. The electrostatic adsorption between multiwalled carbon nanotubes and chitosan was investigated and explained by Fourier transform infrared spectroscopy analysis. Morphology studies showed that uniform distribution of hydroxyapatite particles and multiwalled carbon nanotubes in the polymer matrix was observed. In chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites, the diameters of multiwalled carbon nanotubes were about 10 nm. The mechanical properties of the composites were evaluated by measuring their compressive strength and elastic modulus. The elastic modulus and compressive strength increased sharply from 509.9 to 1089.1 MPa and from 33.2 to 105.5 MPa with an increase of multiwalled carbon/chitosan weight ratios from 0 to 5 %, respectively. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available