4.5 Article

Biodegradable amphiphilic block-graft copolymers based on methoxy poly(ethylene glycol)-b-(polycarbonates-g-polycarbonates) for controlled release of doxorubicin

Journal

Publisher

SPRINGER
DOI: 10.1007/s10856-013-5057-4

Keywords

-

Funding

  1. National Natural Science Foundation of China [21074098]
  2. National Key Basic Research Program of China [2011CB606202, 2009CB930301]

Ask authors/readers for more resources

In this paper, novel biodegradable amphiphilic block-graft copolymers based on methoxy poly(ethylene glycol)-b-(polycarbonates-g-polycarbonates) (mPEG-b-(PATMC-g-PATMC)) were synthesized successfully for controlled release of doxorubicin (DOX). Backbone block copolymer, methoxy poly(ethylene glycol)-b-poly(5-allyloxy-1,3-dioxan-2-one) (mPEG-b-PATMC) was synthesized in bulk catalyzed by immobilized porcine pancreas lipase (IPPL). Then, mPEG-b-PATMC-O, the allyl epoxidation product of mPEG-b-PATMC, was further grafted by PATMC itself also using IPPL as the catalyst. The copolymers were characterized by N-1 HMR and gel permeation chromatography results showed narrow molecular weight distributions. Stable micelle solutions could be prepared by dialysis method, while a monomodal and narrow size distribution could be obtained. Transmission electron microscopy (TEM) observation showed the micelles dispersed in spherical shape with nano-size before and after DOX loading. Compared with the block copolymers, the grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug-loading capacity and entrapment efficiency. Furthermore, the amphiphilic block-graft copolymers mPEG-b-(PATMC-g-PATMC) had low cytotoxicity and more sustained drug release behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available