4.6 Article

Enhancement of poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application

Journal

Publisher

SPRINGER
DOI: 10.1007/s10854-013-1188-0

Keywords

-

Funding

  1. Higher Education Research Promotion
  2. National Research University Project of Thailand, Office of the Higher Education Commission [EN283A]
  3. Ratchadaphiseksomphot Endowment Fund (CU-CLUSTER-FUND)

Ask authors/readers for more resources

In this work, the integration of the useful concepts of polymer blending and doping agent to simultaneously improve various properties of poly(3,4-ethylene dioxy thiophene) poly(styrene sulfonate) (PEDOT:PSS) nano-thin films was shown. According to the polymer-blending concept, insulating poly(vinyl alcohol) (PVA) has a good deal of potential to be utilized as a filler to improve the critical properties of the PEDOT:PSS matrix, especially conductivity, wettability, and thermal and mechanical properties. At the appropriate amount of PVA, 0.08 wt%, it acts as a binder to improve the connection network between PEDOT:PSS chains, leading to a maximum conductivity of 1.18 S/cm, and also providing a good contact angle of 8.8A degrees. The transmission of the films decreased with increasing PVA content; however, all specimens still showed excellent transmittance values of more than 80 %. The thermal stability and the resistance to abrasion of the nano-thin conductive films were improved by strong covalent bonds between PVA and PSS, which were verified by TGA and a scratching test, respectively. In addition, the relationship of PEDOT:PSS properties versus various amounts of insulating PVA for practical usage for specific electronic fields were shown. Use of the doping agent quinoxaline was aimed to particularly enhance the conductivity of PEDOT:PSS. The highest conductivity (2.75 S/cm) was achieved when 0.5 wt% quinoxaline was added into 0.08 wt% PVA/PEDOT:PSS while the other properties were not significantly altered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available