4.6 Article

Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 49, Issue 21, Pages 7476-7488

Publisher

SPRINGER
DOI: 10.1007/s10853-014-8453-3

Keywords

-

Funding

  1. FCT-Fundacao para a Ciencia e Tecnologia [PTDC/FIS/120412/2010]
  2. Fundação para a Ciência e a Tecnologia [PTDC/FIS/120412/2010] Funding Source: FCT

Ask authors/readers for more resources

Titanium dioxide (TiO2) absorbs only a small fraction of incoming sunlight in the visible region thus limiting its photocatalytic efficiency and concomitant photocatalytic ability. The large-scale application of TiO2 nanoparticles has been limited due to the need of using an ultraviolet excitation source to achieve high photocatalytic activity. The inclusion of foreign chemical elements in the TiO2 lattice can tune its band gap resulting in an absorption edge red-shifted to lower energies enhancing the photocatalytic performance in the visible region of the electromagnetic spectrum. In this research work, TiO2 nanoparticles were doped with iron powder in a planetary ball-milling system using stainless steel balls. The correlation between milling rotation speeds with structural and morphologic characteristics, optical and magnetic properties, and photocatalytic abilities of bare and Fe-doped TiO2 powders was studied and discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available