4.6 Article

Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: comparative study on methanol and heat-based crosslinking

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 50, Issue 4, Pages 1943-1957

Publisher

SPRINGER
DOI: 10.1007/s10853-014-8759-1

Keywords

-

Funding

  1. UNIDO (United Nations Industrial Development Organisation) BEST Program, Bangladesh
  2. University of Bolton, UK

Ask authors/readers for more resources

Methanol crosslinking and heat-treatment methods for physical crosslinking of electrospun poly(vinyl alcohol) (PVA) nanofibres were investigated to assess their stability in water. For this purpose, PVAs with low and high molecular weights were selected. Morphology of the crosslinked membranes was characterised by scanning electron microscopy. Crystallinity of the resultant crosslinked fibres were analysed by FT-IR and differential scanning calorimetry. It has been shown that physical crosslinking increases the crystallinity of the fibres. High molecular weight PVA nanofibres showed better stability and better preservation of nanofibrous structure. Stability of the crosslinked membranes was also tested by immersion into water at room temperature and boiling water. Combined methanol and heat treatments at different temperatures and exposure periods were also investigated. Treatment at 180 A degrees C HMW PVA nanofibres for longer durations exhibited best results in terms of water stability, although it exhibited somewhat lower swelling ratios as compared to those subjected to only methanol treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available