4.6 Article

Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 48, Issue 16, Pages 5429-5436

Publisher

SPRINGER
DOI: 10.1007/s10853-013-7336-3

Keywords

-

Funding

  1. Higher Education Commission (HEC) of Pakistan

Ask authors/readers for more resources

Metal oxides are well-known potential alternatives to graphite as anode materials of lithium-ion batteries, and they can deliver much higher reversible capacities than graphite even at high current densities. In this study, hexagonal disk-shaped ZnO are synthesized by a facile solution reaction of ZnCl2 and its composite is prepared in the presence of carbon nanotubes (CNTs). The as prepared ZnO/CNT composite has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fourier transform-infrared spectroscopy and Rutherford backscattering spectroscopy. Electrochemical characterization by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge tests demonstrate that the conversion reactions in ZnO and ZnO/CNT electrodes enable reversible capacity of 478 and 602 mAh g(-1), respectively for up to 50 cycles. Our investigation highlights the importance of anchoring of small ZnO particles on CNTs for maximum utilization of electrochemically active ZnO and CNTs for energy storage application in lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available