4.6 Article

Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 48, Issue 4, Pages 1640-1645

Publisher

SPRINGER
DOI: 10.1007/s10853-012-6921-1

Keywords

-

Funding

  1. National Science Council, Taiwan (NSC) [99-2221 E-011-120]

Ask authors/readers for more resources

Chitosan (CS) nanofibers were prepared by an electrospinning technique and then treated with simulated body fluid (SBF) to encourage hydroxyapatite (HA) formation on their surface. The CS/HA nanofibers were subjected to scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy, and X-ray diffraction (XRD) to confirm HA formation as well as determine the morphology of the nanofibrous scaffolds. The SEM image indicated that the distribution of HA on the CS nanofibers was homogeneous. The results from EDS and XRD indicated that HA was formed on the nanofibrous surfaces after 6-day incubation in the SBF. The calcium/phosphorus ratio of deposited HA was close to that of natural bone. To determine biocompatibility, the CS/HA scaffolds were applied to the culture of rat osteosarcoma cell lines (UMR-106). The cell densities on the CS/HA nanofibers were higher than those on the CS nanofibers, the CS/HA film, and the CS film, indicating that cell proliferation on CS/HA nanofibers was enhanced. Moreover, the early osteogenic differentiation on CS/HA was also more significant, due to the differences in chemical composition and the surface area of CS/HA nanofibers. The biocompatibility and the cell affinity were enhanced using the CS/HA nanofibers. This indicates that electrospun CS/HA scaffolds would be a potential material in bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available