4.6 Article

Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 48, Issue 6, Pages 2690-2700

Publisher

SPRINGER
DOI: 10.1007/s10853-012-7064-0

Keywords

-

Funding

  1. Department of Energy [EE0002611-600]

Ask authors/readers for more resources

An electrospun nanofiber-coated Celgard(A (R)) 2400 polypropylene microporous battery separator was prepared using polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-co-chlorotrifluoroethylene (PVDF-co-CTFE). The coating of PVDF and PVDF-co-CTFE nanofibers was carried out using single nozzle and nozzle-less electrospinning methods. The nanofiber coating prepared by the nozzle-less electrospinning method was found to have better adhesion to the microporous separator membrane than the nanofiber coating prepared by single nozzle electrospinning. The PVDF and PVDF-co-CTFE nanofiber coatings increased the electrolyte uptake capacity in a secondary lithium-ion battery, with PVDF-co-CTFE co-polymer nanofiber-coated microporous membrane showing higher electrolyte uptake capacity than PVDF homopolymer-coated microporous membrane. In addition, the PVDF and PVDF-co-CTFE nanofiber coatings improved the adhesion of the porous microporous membrane to a battery electrode. It was also found that nanofiber coatings prepared by the nozzle-less electrospinning method have better adhesion properties and higher electrolyte uptake capacity than those by single nozzle electrospinning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available