4.6 Article

Structural and electronic impact of SrTiO3 substrate on TiO2 thin films

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 47, Issue 13, Pages 5148-5157

Publisher

SPRINGER
DOI: 10.1007/s10853-012-6392-4

Keywords

-

Funding

  1. MEXT of Japan
  2. [22760500]
  3. Grants-in-Aid for Scientific Research [22760500, 19053003, 24686069, 24656376, 22246088] Funding Source: KAKEN

Ask authors/readers for more resources

We demonstrate that the atomic structures, electronic states, and bonding nature of the interface between SrTiO3 substrate and anatase TiO2 thin films could be related and technologically manipulated at the atomic level. Applying advanced transmission electron microscopy, the grown anatase TiO2 thin films are found to make a clean and direct contact to the SrTiO3 substrates in an epitaxial, coherent, and atomically abrupt way. The atomic-resolution microscopic images reveal that the interface comprises SrO-terminated SrTiO3 and Ti-terminated TiO2 with the interfacial Ti of TiO2 sitting above the hollow site, which is confirmed theoretically to be the most energetically favorable. Quantitatively, the first-principles calculations predict that the oxygen sublattice at the interface undergoes a notable reconstruction, i.e., the interfacial O atoms of TiO2 are displaced largely toward the SrO plane of the SrTiO3, flattening the originally zigzag TiO2 atomic chains. Consequently, the interfacial layers suffer a remarkable modification in the charge accumulation and also a deviation in the density of states from their bulk counterparts, indicating that the substrate can have an impact on the deposited thin films electronically. Using several analytic methods, the SrTiO3/TiO2 interface is found to take on a metallic nature, and the interfacial bonding is determined to be of a mixed covalent and ionic character. This combined experimental and theoretical investigation gains insight into the complex atomic and electronic structures of the buried interface, which are fundamental for relating the atomic-scale structures to their properties on a quantum level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available