4.6 Article

Compressive mechanical properties and deformation behavior of porous polymer blends of poly(ε-caprolactone) and poly(l-lactic acid)

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 46, Issue 24, Pages 7850-7857

Publisher

SPRINGER
DOI: 10.1007/s10853-011-5766-3

Keywords

-

Ask authors/readers for more resources

Porous biodegradable polymeric scaffolds are developed by physically blending two different kinds of biodegradable polymers, PCL, and PLLA, for application in tissue engineering. The main objective of the development of this material is to control the mechanical properties, such as, elastic modulus and strength. The results from mechanical testing showed that the compressive mechanical properties of PCL/PLLA scaffold can be varied by changing the blend ratio. It also showed that these properties can be well predicted by the rule of mixture. The primary deformation mechanism of the scaffolds was found to be localized buckling of struts surrounding the pores. Localized ductile failure caused by PCL phase tends to be suppressed with increasing PLLA content. The immiscibility of PCL and PLLA caused the phase-separation morphology that strongly affected the macroscopic mechanical properties and the microscopic deformation behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available