4.6 Article

Effects of the molecular format of collagen on characteristics of electrospun fibres

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 47, Issue 3, Pages 1148-1155

Publisher

SPRINGER
DOI: 10.1007/s10853-011-5775-2

Keywords

-

Funding

  1. NZ Foundation for Research Science and Technology (FRST)
  2. New Zealand Institute for Plant and Food Research Ltd

Ask authors/readers for more resources

Electrospinning is a process that is used to create nanofibres, which have the potential to be used in many medical and industrial applications. The molecular structure of the raw material is an important factor in determining the structure and quality of the electrospun fibres. In this study, we extracted collagen from a cold water fish species, hoki (Macruronus novaezelandiae), and prepared it in several different molecular formats (native triple helical collagen, denatured whole chains, denatured atelocollagen chains and gelatin) for electrospinning. Low molecular weight gelatin and atelocollagen did not form fibres. Treatment with 1,1,1,3,3,3 hexafluoro-2-propanol or 40% acetic acid denatured collagen molecules into intact alpha-chains prior to the electrospinning process. When using intact denatured collagen chains, 10% acetic acid was an effective aqueous-based solvent for producing uniform fibres. This information will be useful for the development of a non-toxic, aqueous solvent system suitable for industrial scale-up of the electrospinning process. Our results show that this low imino marine collagen is a suitable biopolymer for producing electrospun fibres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available