4.6 Article

In-plane conduction of polymer composite plates reinforced with architectured networks of Copper fibres

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 47, Issue 6, Pages 2932-2942

Publisher

SPRINGER
DOI: 10.1007/s10853-011-6126-z

Keywords

-

Funding

  1. ANR [ANR-09-JCJC-0030-01]
  2. Region Rhone-Alpes (France)
  3. competitiveness cluster Plastipolis (France)
  4. Agence Nationale de la Recherche (ANR) [ANR-09-JCJC-0030] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Model composite plates composed of highly conductive slender copper fibres impregnated with a poorly conductive and transparent PMMA matrix were processed with different fibrous architectures, i.e. with various controlled fibre contents and orientations. Their microstructure was characterised using both optical observations and X-ray microtomography. Their in-plane thermal conductivity was measured by using a specific testing apparatus combined with an inverse modelling method. Results point out the strong link between the anisotropy of the in-plane conductivity and of the microstructure. The role of the fibre content on the conductivity is also emphasised. An analytical conduction model which accounts for the influence of the fibre content, the orientation, the aspect ratio and the thermal resistances at fibre-fibre contacts, was proposed and its predictions were compared with the experimental results. Using only one fitting parameter, namely the conductance at fibre-fibre contacts, this model shows a good prediction of all the experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available