4.6 Article

Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 44, Issue 5, Pages 1219-1236

Publisher

SPRINGER
DOI: 10.1007/s10853-008-3179-8

Keywords

-

Funding

  1. World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

Ask authors/readers for more resources

The intricate bulk and contact multiphysics of spark plasma sintering (SPS) together with the involved non-linear materials' response make the process optimization very difficult both experimentally and computationally. The present work proposes an integrated experimental/numerical methodology, which simultaneously permits the developed SPS model to be reliably tested against experiments and to self-consistently estimate the overall set of unknown SPS contact resistances. Unique features of the proposed methodology are: (a) simulations and experiments are conducted in current control mode (SPS-CCm); (b) the SPS model couples electrothermal and displacement fields; (c) the contact multiphysics at the sliding punch/die interface is modeled during powder sintering using a moving mesh/moving boundary technique; (d) calibration and validation procedures employ both graphite compact and conductive WC powder samples. The unknown contact resistances are estimated iteratively by minimizing the deviation between predictions and on-line measurements (i.e., voltage, die surface temperature, and punch displacement) for three imposed currents (i.e., 1,900, 2,100, 2,700 A) and 20 MPa applied pressure. An excellent agreement is found between model predictions and measurements. The results show that the SPS bulk and contact multiphysics can be accurately reproduced during densification of ultrafine binderless WC powder. The results can be used to benchmark contact resistances in SPS systems applicable to graphite and conductive (WC) powder samples. The SPS bulk and contact multiphysics phenomena arising during sintering of ultrafine binderless WC powders are finally discussed. A direct correlation between sintering microstructure, sintering temperature, and heating rate is established. The developed self-consistent SPS model can be effective used as an aiding tool to design optimum SPS experiments, predict sintering microstructure, or benchmark SPS system hardware or performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available