4.6 Article

Properties of cellulosic fibre reinforced plaster: influence of hemp or flax fibres on the properties of set gypsum

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 45, Issue 3, Pages 793-803

Publisher

SPRINGER
DOI: 10.1007/s10853-009-4002-x

Keywords

-

Ask authors/readers for more resources

In the last few years, eco friendly materials have become an important part of the building materials market. Natural fibres are already used in various types of materials, like plastics, concrete and lime-based products. They demonstrate different attributes like the combination of good mechanical, thermal and acoustic properties that allow these types of materials to be used for different applications. The main drawback associated with plaster is its brittleness, especially under tensile stress. Therefore, it is interesting to investigate different methods that could potentially enhance the mechanical properties of plaster. Adding fibres to gypsum to obtain a composite material is one way to improve the behaviour of the product, especially after the failure of the matrix. The aim of this work was to the study the effects of adding natural fibres, namely hemp and flax fibres, on the setting time of plaster and the mechanical properties of the composite matrix. It was shown that hemp delayed the setting of plaster, unlike flax. The initial and final setting times almost doubled when hemp was added in a plaster matrix, whereas flax fibres did not drastically change them. Different chemical treatments of hemp were tested and the impact on the setting time was measured. The setting times of both composites made with hemp and flax were reduced once the fibres were treated (25-40% reduction), compared to the setting time of the calcium sulphate hemihydrate alone. The mechanical properties of the composite materials are also discussed. The behaviour of plaster was modified from brittle to a non-linear one when fibres were added, and even at small levels of addition, flax fibres allowed slightly higher values of flexural strength to be reached.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available